Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.852
1.
Stem Cell Res Ther ; 15(1): 134, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715091

BACKGROUND: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. METHODS: HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. RESULTS: Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. CONCLUSIONS: This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window.


Administration, Intranasal , Chemokine CXCL10 , Hypoxia-Ischemia, Brain , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred C57BL , Animals , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Mice , Female , Male , Animals, Newborn , Cell Movement
2.
Cells ; 13(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38667275

Blood-brain barrier (BBB) dysfunction and neuroinflammation are key mechanisms of brain injury. We performed a time-course study following neonatal hypoxia-ischemia (HI) to characterize these events. HI brain injury was induced in postnatal day 10 rats by single carotid artery ligation followed by hypoxia (8% oxygen, 90 min). At 6, 12, 24, and 72 h (h) post-HI, brains were collected to assess neuropathology and BBB dysfunction. A significant breakdown of the BBB was observed in the HI injury group compared to the sham group from 6 h in the cortex and hippocampus (p < 0.001), including a significant increase in albumin extravasation (p < 0.0033) and decrease in basal lamina integrity and tight-junction proteins. There was a decrease in resting microglia (p < 0.0001) transitioning to an intermediate state from as early as 6 h post-HI, with the intermediate microglia peaking at 12 h (p < 0.0001), which significantly correlated to the peak of microbleeds. Neonatal HI insult leads to significant brain injury over the first 72 h that is mediated by BBB disruption within 6 h and a transitioning state of the resident microglia. Key BBB events coincide with the appearance of the intermediate microglial state and this relationship warrants further research and may be a key target for therapeutic intervention.


Animals, Newborn , Blood-Brain Barrier , Hypoxia-Ischemia, Brain , Microglia , Animals , Microglia/pathology , Microglia/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/metabolism , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/metabolism , Rats , Rats, Sprague-Dawley , Time Factors , Male , Female
3.
Neuroscience ; 545: 141-147, 2024 May 03.
Article En | MEDLINE | ID: mdl-38513760

Neonatal encephalopathy (NE) impairs white matter development and results in long-term neurodevelopmental deficits. Leveraging prior findings of altered neuronal proteins carried by brain-derived extracellular vesicles (EVs) that are marked by a neural-specific cell surface glycoprotein Contactin-2 (CNTN2) in NE infants, the present study aimed to determine the correlation between brain and circulating CNTN2+-EVs and whether NE alters circulating CNTN2+-EV levels in mice. Brain tissue and plasma were collected from postnatal day (P)7, 10, 11, 15 mice to determine the baseline CNTN2 correlation between these two compartments (n = 4-7/time point/sex). NE was induced in P10 pups. Brain and plasma samples were collected at 1, 3, 6, 24, and 120 h (n = 4-8/time point/sex). CNTN2 from brain tissue and plasma EVs were quantified using ELISA. ANOVA and linear regression analyses were used to evaluate changes and correlations between brain and plasma CNTN2+-EVs. In baseline experiments, CNTN2 in brain tissue and plasma EVs peaked at P10 with no sex-difference. Brain and plasma CNTN2+-EV showed a positive correlation across early postnatal ages. NE pups showed an elevated CNTN2 in brain tissue and EVs at 1 h and only in brain tissue at 24 h. NE also abolished the positive plasma-brain correlation. The findings establish a link for central CNTN2 and its release into circulation during early postnatal life. The immediate elevation and release of CNTN2 following NE highlight a potential molecular response shortly after a brain injurious event. Our findings further support the utility of circulating brain-derived EVs as a possible bioindicator of NE.


Animals, Newborn , Brain , Contactin 2 , Extracellular Vesicles , Hypoxia-Ischemia, Brain , Animals , Extracellular Vesicles/metabolism , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Brain/metabolism , Female , Male , Mice , Contactin 2/metabolism , Mice, Inbred C57BL
4.
Stem Cell Rev Rep ; 20(4): 1015-1025, 2024 May.
Article En | MEDLINE | ID: mdl-38483743

The broad spectrum of brain injuries in preterm newborns and the plasticity of the central nervous system prompts us to seek solutions for neurodegeneration to prevent the consequences of prematurity and perinatal problems. The study aimed to evaluate the safety and efficacy of the implantation of autologous bone marrow nucleated cells and bone marrow mesenchymal stem cells in different schemes in patients with hypoxic-ischemic encephalopathy and immunological encephalopathy. Fourteen patients received single implantation of bone marrow nucleated cells administered intrathecally and intravenously, followed by multiple rounds of bone marrow mesenchymal stem cells implanted intrathecally, and five patients were treated only with repeated rounds of bone marrow mesenchymal stem cells. Seizure outcomes improved in most cases, including fewer seizures and status epilepticus and reduced doses of antiepileptic drugs compared to the period before treatment. The neuropsychological improvement was more frequent in patients with hypoxic-ischemic encephalopathy than in the immunological encephalopathy group. Changes in emotional functioning occurred with similar frequency in both groups of patients. In the hypoxic-ischemic encephalopathy group, motor improvement was observed in all patients and the majority in the immunological encephalopathy group. The treatment had manageable toxicity, mainly mild to moderate early-onset adverse events. The treatment was generally safe in the 4-year follow-up period, and the effects of the therapy were maintained after its termination.


Drug Resistant Epilepsy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Male , Female , Drug Resistant Epilepsy/therapy , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/pathology , Infant , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Child, Preschool , Child , Treatment Outcome
5.
J Forensic Leg Med ; 103: 102662, 2024 Apr.
Article En | MEDLINE | ID: mdl-38484484

Volatile Solvents Abuse (VSA) poses major health risks, especially for young people and those living in precarious socio-economic conditions. Such substances can in fact bring about psychoactive effects such as euphoria, and even lead to sudden death from cardiac arrhythmias, respiratory depression, myocardial infarction, laryngospasm, encephalopathy, and rhabdomyolysis. The present case report is centered around a 23-year-old man who died in prison due to inhalation of a cooker gas mixture (n-butane, propane, and isobutane) inside a plastic bag. External examination and autopsy showed non-specific signs of asphyxia associated with edema and brain swelling. Histological signs of early myocardial damage and hypoxic-ischemic injury (HII) were highlighted in the brain and cerebellum, as well as activated macrophages and anthracotic-like material in the lungs. Toxicological investigations revealed the presence of propane, isobutane and n-butane in liquids and biological samples. Besides the cardiotoxic effect, there was an asphyctic component due to the plastic bag that may have facilitated death. The assessment of cerebral HII and cardiopulmonary damage in acute cases is very important to prove death by butane inhalation. In the forensic field, it may be useful to shed more light on intoxications, deaths, and butane encephalopathies, as the latter can be mistaken for a hypoxic-ischemic encephalopathy.


Butanes , Death, Sudden , Humans , Male , Young Adult , Asphyxia/etiology , Asphyxia/pathology , Brain/pathology , Brain Edema/pathology , Butanes/poisoning , Butanes/adverse effects , Death, Sudden/etiology , Hypoxia-Ischemia, Brain/etiology , Hypoxia-Ischemia, Brain/pathology , Inhalant Abuse/complications , Lung/pathology , Myocardium/pathology , Propane/poisoning , Propane/adverse effects
6.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article En | MEDLINE | ID: mdl-38338884

The need for new and effective treatments for neonates suffering from hypoxia-ischemia is urgent, as the only implemented therapy in clinics is therapeutic hypothermia, only effective in 50% of cases. Cannabinoids may modulate neuronal development and brain plasticity, but further investigation is needed to better describe their implication as a neurorestorative therapy after neonatal HI. The cannabinoid URB447, a CB1 antagonist/CB2 agonist, has previously been shown to reduce brain injury after HI, but it is not clear whether sex may affect its neuroprotective and/or neurorestorative effect. Here, URB447 strongly reduced brain infarct, improved neuropathological score, and augmented proliferative capacity and neurogenic response in the damaged hemisphere. When analyzing these effects by sex, URB447 ameliorated brain damage in both males and females, and enhanced cell proliferation and the number of neuroblasts only in females, thus suggesting a neuroprotective effect in males and a double neuroprotective/neurorestorative effect in females.


Benzyl Compounds , Brain Injuries , Cannabinoids , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Pyrroles , Animals , Rats , Male , Female , Animals, Newborn , Hypoxia-Ischemia, Brain/pathology , Rats, Wistar , Ischemia/pathology , Neurogenesis , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Cannabinoids/pharmacology , Brain Injuries/pathology , Brain/pathology
7.
Sci Rep ; 14(1): 2326, 2024 01 28.
Article En | MEDLINE | ID: mdl-38282118

Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal death and neurological dysfunction. Neuroinflammation is identified as one of the crucial pathological mechanisms after HIBD, and natural killer group 2 member D (NKG2D) is reported to be implicated in the pathogenesis of immunoinflammatory diseases. However, the role of NKG2D in neonatal HIBD is seldomly investigated. In this study, a neonatal mice model of HIBD was induced, and the role of the NKG2D in neuroinflammation and brain injury was explored by intracerebroventricular injection of lentivirus to knockdown NKG2D in neonatal mice with HIBD. The results showed that a significant increase in NKG2D protein level in the brain of neonatal mice with HIBD. The NKG2D knockdown in the brain significantly alleviated cerebral infarction, neurobehavioral deficits, and neuronal loss in neuronal HIBD. Moreover, the neuroprotective effect of NKG2D knockdown was associated with inhibition of the activation of microglia and astrocytes, expression of NKG2D ligands (NKG2DLs) and DAP10, and the nuclear translocation of NF-κB p65. Our findings reveal NKG2D knockdown may exert anti-inflammatory and neuroprotective effects in the neonatal mice with HIBD through downregulation of NKG2D/NKG2DLs/DAP10/NF-κB pathway. These results suggest that NKG2D may be a potential target for the treatment of neonatal HIBD.


Hypoxia-Ischemia, Brain , NK Cell Lectin-Like Receptor Subfamily K , Animals , Mice , Animals, Newborn , Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Neuroinflammatory Diseases , NF-kappa B/metabolism , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism
8.
PLoS One ; 19(1): e0295860, 2024.
Article En | MEDLINE | ID: mdl-38206902

OBJECTIVE: To examine acute seizure activity and neuronal damage in a neonatal mouse model of inflammation-sensitized hypoxic-ischemic (IS-HI) brain injury utilizing continuous electroencephalography (cEEG) and neurohistology. METHODS: Neonatal mice were exposed to either IS-HI with Escherichia coli lipopolysaccharide (LPS) or HI alone on postnatal (p) day 10 using unilateral carotid artery ligation followed by global hypoxia (n = 10 [5 female, 5 male] for IS-HI, n = 12 [5 female, 7 male] for HI alone). Video cEEG was recorded for the duration of the experiment and analyzed for acute seizure activity and behavior. Brain tissue was stained and scored based on the degree of neuronal injury in the hippocampus, cortex, and thalamus. RESULTS: There was no significant difference in acute seizure activity among mice exposed to IS-HI compared to HI with regards to seizure duration (mean = 63 ± 6 seconds for HI vs mean 62 ± 5 seconds for IS-HI, p = 0.57) nor EEG background activity. Mice exposed to IS-HI had significantly more severe neural tissue damage at p30 as measured by neuropathologic scores (mean = 8 ± 1 vs 23 ± 3, p < 0.0001). INTERPRETATION: In a neonatal mouse model of IS-HI, there was no significant difference in acute seizure activity among mice exposed to IS-HI compared to HI. Mice exposed to IS-HI did show more severe neuropathologic damage at a later age, which may indicate the presence of chronic inflammatory mechanisms of brain injury distinct from acute seizure activity.


Brain Injuries , Hypoxia-Ischemia, Brain , Animals , Mice , Male , Female , Animals, Newborn , Hypoxia-Ischemia, Brain/pathology , Hypoxia/pathology , Seizures , Inflammation/pathology , Brain Injuries/pathology , Disease Models, Animal , Ischemia/pathology , Brain/pathology
9.
Dev Neurosci ; 46(2): 98-111, 2024.
Article En | MEDLINE | ID: mdl-37231852

The developing brain is uniquely susceptible to oxidative stress, and endogenous antioxidant mechanisms are not sufficient to prevent injury from a hypoxic-ischemic challenge. Glutathione peroxidase (GPX1) activity reduces hypoxic-ischemic injury. Therapeutic hypothermia (HT) also reduces hypoxic-ischemic injury, in the rodent and the human brain, but the benefit is limited. Here, we combined GPX1 overexpression with HT in a P9 mouse model of hypoxia-ischemia (HI) to test the effectiveness of both treatments together. Histological analysis showed that wild-type (WT) mice with HT were less injured than WT with normothermia. In the GPX1-tg mice, however, despite a lower median score in the HT-treated mice, there was no significant difference between HT and normothermia. GPX1 protein expression was higher in the cortex of all transgenic groups at 30 min and 24 h, as well as in WT 30 min after HI, with and without HT. GPX1 was higher in the hippocampus of all transgenic groups and WT with HI and normothermia, at 24 h, but not at 30 min. Spectrin 150 was higher in all groups with HI, while spectrin 120 was higher in HI groups only at 24 h. There was reduced ERK1/2 activation in both WT and GPX1-tg HI at 30 min. Thus, with a relatively moderate insult, we see a benefit with cooling in the WT but not the GPX1-tg mouse brain. The fact that we see no benefit with increased GPx1 here in the P9 model (unlike in the P7 model) may indicate that oxidative stress in these older mice is elevated to an extent that increased GPx1 is insufficient for reducing injury. The lack of benefit of overexpressing GPX1 in conjunction with HT after HI indicates that pathways triggered by GPX1 overexpression may interfere with the neuroprotective mechanisms provided by HT.


Hypothermia, Induced , Hypothermia , Hypoxia-Ischemia, Brain , Animals , Mice , Humans , Animals, Newborn , Spectrin , Hypoxia-Ischemia, Brain/pathology , Hypoxia , Glutathione Peroxidase/metabolism , Antioxidants , Ischemia
10.
Dev Neurosci ; 46(1): 55-68, 2024.
Article En | MEDLINE | ID: mdl-37231858

Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of acquired neonatal brain injury with the risk of developing serious neurological sequelae and death. An accurate and robust prediction of short- and long-term outcomes may provide clinicians and families with fundamental evidence for their decision-making, the design of treatment strategies, and the discussion of developmental intervention plans after discharge. Diffusion tensor imaging (DTI) is one of the most powerful neuroimaging tools with which to predict the prognosis of neonatal HIE by providing microscopic features that cannot be assessed by conventional magnetic resonance imaging (MRI). DTI provides various scalar measures that represent the properties of the tissue, such as fractional anisotropy (FA) and mean diffusivity (MD). Since the characteristics of the diffusion of water molecules represented by these measures are affected by the microscopic cellular and extracellular environment, such as the orientation of structural components and cell density, they are often used to study the normal developmental trajectory of the brain and as indicators of various tissue damage, including HIE-related pathologies, such as cytotoxic edema, vascular edema, inflammation, cell death, and Wallerian degeneration. Previous studies have demonstrated widespread alteration in DTI measurements in severe cases of HIE and more localized changes in neonates with mild-to-moderate HIE. In an attempt to establish cutoff values to predict the occurrence of neurological sequelae, MD and FA measurements in the corpus callosum, thalamus, basal ganglia, corticospinal tract, and frontal white matter have proven to have an excellent ability to predict severe neurological outcomes. In addition, a recent study has suggested that a data-driven, unbiased approach using machine learning techniques on features obtained from whole-brain image quantification may accurately predict the prognosis of HIE, including for mild-to-moderate cases. Further efforts are needed to overcome current challenges, such as MRI infrastructure, diffusion modeling methods, and data harmonization for clinical application. In addition, external validation of predictive models is essential for clinical application of DTI to prognostication.


Diffusion Tensor Imaging , Hypoxia-Ischemia, Brain , Infant, Newborn , Humans , Diffusion Tensor Imaging/methods , Prognosis , Hypoxia-Ischemia, Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Edema/complications , Edema/pathology
11.
Pediatr Dev Pathol ; 27(2): 123-131, 2024.
Article En | MEDLINE | ID: mdl-37749054

OBJECTIVE: To elucidate particular placental pathology findings that are associated with hypoxic ischemic encephalopathy (HIE) and determine which patterns are associated with adverse fetal/neonatal outcomes. STUDY DESIGN: Multi-institutional retrospective case-control study of newborns with HIE (2002-2022) and controls. Four perinatal pathologists performed gross and histologic evaluation of placentas of cases and controls. RESULTS: A total of 265 placentas of neonates with HIE and 122 controls were examined. Infants with HIE were more likely to have anatomic umbilical cord abnormalities (19.7% vs 7.4%, P = .003), fetal inflammatory response in the setting of amniotic fluid infection (27.7% vs 13.9%, P = .004), and fetal vascular malperfusion (30.6% vs 9.0%, P = <.001) versus controls. Fetal vascular malperfusion with maternal vascular malperfusion was more common in those who died of disease (P = .01). CONCLUSION: Placental pathology examination of neonates with HIE may improve our understanding of this disorder and its adverse outcomes.


Hypoxia-Ischemia, Brain , Placenta Diseases , Infant , Humans , Pregnancy , Infant, Newborn , Female , Placenta/pathology , Retrospective Studies , Case-Control Studies , Hypoxia-Ischemia, Brain/pathology , Placenta Diseases/pathology , Amniotic Fluid
12.
Mol Neurobiol ; 61(3): 1417-1432, 2024 Mar.
Article En | MEDLINE | ID: mdl-37721688

Reperfusion is an essential pathological stage in hypoxic ischemic encephalopathy (HIE). Although the Rice-Vannucci model is widely used in HIE research, it remains difficult to replicate HIE-related reperfusion brain injury. The purpose of this study is to establish a rat model of hypoxia ischemia reperfusion brain damage (HIRBD) using a common carotid artery (CCA) muscle bridge in order to investigate the mechanisms of cerebral resistance to hypoxic-ischemic and reperfusion brain damage. Random assignment of Sprague-Dawley (SD) rats to the Sham, HIRBD, and Rice-Vannucci groups. Changes in body weight, mortality rate, spontaneous alternation behavior test (SAB test), and dynamic changes in cerebral blood flow (CBF) were detected. The damaged cerebral cortices were extracted for morphological comparison, transcriptomic analysis, and quantitative real-time PCR. Harvesting the hippocampus for transmission electron microscopy (TEM) detection. As a result, CCA muscle bridge could effectively block CBF, which recovered after the muscle bridge detachment. Pathological comparison, the SAB test, and TEM analysis revealed that brain damage in Rice-Vannucci was more severe than HIRBD. Gpx1, S100a6, Cldn5, Esr1, and Gfap were highly expressed in both HIRBD and Rice-Vannucci. In conclusion, the CCA muscle bridge-established HIRBD model could be used as an innovative and dependable model to simulate pathological process of HIRBD.


Brain Injuries , Hypoxia-Ischemia, Brain , Reperfusion Injury , Rats , Animals , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/pathology , Rats, Sprague-Dawley , Brain/pathology , Brain Injuries/pathology , Hypoxia/pathology , Reperfusion , Reperfusion Injury/complications , Reperfusion Injury/pathology , Animals, Newborn
13.
Glia ; 72(3): 546-567, 2024 Mar.
Article En | MEDLINE | ID: mdl-37987116

Although brain scars in adults have been extensively studied, there is less data available regarding scar formation during the neonatal period, and the involvement of peripheral immune cells in this process remains unexplored in neonates. Using a murine model of neonatal hypoxic-ischemic encephalopathy (HIE) and confocal microscopy, we characterized the scarring process and examined the recruitment of peripheral immune cells to cortical and hippocampal scars for up to 1 year post-insult. Regional differences in scar formation were observed, including the presence of reticular fibrotic networks in the cortex and perivascular fibrosis in the hippocampus. We identified chemokines with chronically elevated levels in both regions and demonstrated, through a parabiosis-based strategy, the recruitment of lymphocytes, neutrophils, and monocyte-derived macrophages to the scars several weeks after the neonatal insult. After 1 year, however, neutrophils and lymphocytes were absent from the scars. Our data indicate that peripheral immune cells are transient components of HIE-induced brain scars, opening up new possibilities for late therapeutic interventions.


Cicatrix , Hypoxia-Ischemia, Brain , Adult , Animals , Humans , Mice , Cicatrix/pathology , Brain/pathology , Macrophages , Hypoxia-Ischemia, Brain/pathology
14.
Int J Dev Neurosci ; 84(1): 22-34, 2024 Feb.
Article En | MEDLINE | ID: mdl-37842754

BACKGROUND: Many medical experts prescribe indomethacin because of its anti-inflammatory, analgesic, tocolytic, and duct closure effects. This article presents an evaluation of the enduring impact of indomethacin on neonatal rats with hypoxic-ischemic (HI) insults, employing behavioral tests as a method of assessment. METHODS: The experiment was conducted on male Wistar-Albino rats weighing 10 to 15 g, aged between seven and 10 days. The rats were divided into three groups using a random allocation method as follows: hypoxic ischemic encephalopathy (HIE) group, HIE treated with indomethacin group (INDO), and Sham group. A left common carotid artery ligation and hypoxia model was applied in both the HIE and INDO groups. The INDO group was treated with 4 mg/kg intraperitoneal indomethacin every 24 h for 3 days, while the Sham and HIE groups were given dimethylsulfoxide (DMSO). After 72 h, five rats from each group were sacrificed and brain tissue samples were stained with 2,3,5-Triphenyltetrazolium chloride (TCC) for infarct-volume measurement. Seven rats from each group were taken to the behavioral laboratory in the sixth postnatal week (PND42) and six from each group were sacrificed for the Evans blue (EB) experiment for blood-brain barrier (BBB) integrity evaluation. The open field (OF) test and Morris water maze (MWM) tests were performed. After behavioral tests, brain tissue were obtained and stained with TCC to assess the infarct volume. RESULTS: The significant increase in the time spent in the central area and the frequency of crossing to the center in the INDO group compared with the HIE group indicated that indomethacin decreased anxiety-like behavior (p < 0.001, p < 0.05). However, the MWM test revealed that indomethacin did not positively affect learning and memory performance (p > 0.05). Additionally, indomethacin significantly reduced infarct volume and neuropathological grading in adolescence (p < 0.05), although not statistically significant in the early period. Moreover, the EB experiment demonstrated that indomethacin effectively increased BBB integrity (p < 0.05). CONCLUSIONS: In this study, we have shown for the first time that indomethacin treatment can reduce levels of anxiety-like behavior and enhance levels of exploratory behavior in a neonatal rat model with HIE. It is necessary to determine whether nonsteroidal anti-inflammatory agents, such as indomethacin, should be used for adjuvant therapy in newborns with HIE.


Hypoxia-Ischemia, Brain , Animals , Rats , Male , Animals, Newborn , Rats, Wistar , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/pathology , Indomethacin/pharmacology , Indomethacin/therapeutic use , Behavior Rating Scale , Maze Learning , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Infarction
15.
Brain Res ; 1822: 148580, 2024 01 01.
Article En | MEDLINE | ID: mdl-37709160

BACKGROUND: This study aimed to observe changes of rats' brain infarction and blood vessels during neonatal hypoxic ischemic encephalopathy (NHIE) modeling by Transcranial Doppler Ultrasonography (TCD) so as to assess the feasibility of TCD in evaluating NHIE modeling. METHODS: Postnatal 7-days (d)-old Sprague Dawley (SD) rats were divided into the Sham group, hypoxic-ischemic (HI) group, and hypoxia (H) group. Rats in the HI group and H group were subjected to hypoxia-1 hour (h), 1.5 h and 2.5 h, respectively. Evaluation on brain lesion was made based on Zea-Longa scores, hematoxylin-eosin (HE) staining and Nissl staining. The brain infarction and blood vessels of rats were monitored and analyzed under TCD. Correlation analysis was applied to reveal the connection between hypoxic duration and infarct size detected by TCD or Nissl staining. RESULTS: In H and HI modeling, longer duration of hypoxia was associated with higher Zea-Longa scores and more severe nerve damage. On the 1 d after modeling, necrosis was found in SD rats' brain indicated by HE and Nissl staining, which was aggravated as hypoxic duration prolonged. Alteration of brain structures and blood vessels of SD rats was displayed in Sham, HI and H rats under TCD. TCD images for coronal section revealed that brain infarct was detected at the cortex and there was marked cerebrovascular back-flow of HI rats regardless of hypoxic duration. On the 7 d after modeling, similar infarct was detected under TCD at the cortex of HI rats in hypoxia-1 h, 1.5 h and 2.5 h groups, whereas the morphological changes were deteriorated with longer hypoxic time. Correlation analysis revealed positive correlation of hypoxic duration with infarct size detected by histological detection and TCD. CONCLUSIONS: TCD dynamically monitored cerebral infarction after NHIE modeling, which will be potentially served as a useful auxiliary method for future animal experimental modeling evaluation in the case of less animal sacrifice.


Hypoxia-Ischemia, Brain , Rats , Animals , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/pathology , Rats, Sprague-Dawley , Animals, Newborn , Ultrasonography, Doppler, Transcranial , Brain/pathology , Ischemia/pathology , Cerebral Infarction/diagnostic imaging , Cerebral Infarction/pathology , Brain Infarction/pathology
16.
Exp Neurol ; 371: 114611, 2024 01.
Article En | MEDLINE | ID: mdl-37944882

BACKGROUND AND PURPOSE: There is growing evidence that infants with mild hypoxic-ischemic (HI) encephalopathy have increased risk of brain injury and adverse neurodevelopmental outcomes. Currently, there is no approved treatment for these infants. It was previously shown that blocking connexin 43 hemichannels is neuroprotective in models of moderate to severe HI injury. However, it is yet to be established whether these channels play a role in the evolution of mild HI brain injury, and whether blocking these channels after mild HI is neuroprotective. METHODS: HI was induced in postnatal day 10 rats of both sexes by right carotid artery ligation followed by 80 min of hypoxia in 8% oxygen. Pups receiving HI were randomised to receive intraperitoneal injections of either saline, vehicle (2-hydroxypropyl-beta-cyclodextrin polyethylene glycol-400), or tonabersat (2 mg/kg), at 60 min, 24 h, and 48 h after hypoxia. Seven days after HI, brains were harvested for measurement of volume loss and histological analysis. RESULTS: HI resulted in a significant reduction in hemispheric, hippocampal, and white matter volumes, which were significantly attenuated after treatment with tonabersat. HI was also associated with a significant reduction in numbers of neurons in the CA1 and CA3 hippocampal regions, a reduction in the numbers of oligodendrocytes in the corpus callosum, and an increase in the number of astrocytes in both regions, which were significantly attenuated by tonabersat treatment. There were no differences in rectal temperatures between tonabersat- and vehicle-treated rat pups. CONCLUSIONS: Blockade of connexin hemichannels with tonabersat significantly reduced mild HI injury in the hippocampus and white matter, without causing hypothermia.


Brain Injuries , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Animals , Female , Male , Rats , Animals, Newborn , Brain/pathology , Brain Injuries/pathology , Connexins , Hypoxia/pathology , Hypoxia-Ischemia, Brain/prevention & control , Hypoxia-Ischemia, Brain/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
17.
Exp Brain Res ; 242(2): 443-449, 2024 Feb.
Article En | MEDLINE | ID: mdl-38147087

The purpose of this study was to identify the target genes of tcon_00044595, elucidate its activation site, and provide novel insights into the pathogenesis and treatment of neonatal hypoxic-ischemic brain damage (HIBD). Through homologous blast analysis, we identified predicted target sequences in the neighboring regions of the long non-coding RNA (lncRNA) tcon_00044595, suggesting that limd1 is its target gene. Starbase was utilized to identify potential candidate microRNAs associated with the lncRNA. The interaction between the candidate microRNAs and limd1 was investigated and validated using various experimental methods including in vitro cell culture, cell transfection, dual fluorescence reporter detection system, and real-time PCR. Homology alignment analysis revealed that the lncRNA tcon_00044595 exhibited a 246 bp homologous sequence at the 3' end of the adjacent limd1 gene, with a conservation rate of 68%. Analysis conducted on Starbase online identified three potential microRNA candidates: miR-3471, miR-883a-5p, and miR-214-3p. Intracellular expression of the limd1 gene was significantly down-regulated upon transfection with miR-3471, while the other two microRNAs did not produce noticeable effects. Luciferase reporter assays identified two interaction sites (UTR-1, UTR-2) between miR-3471 and the limd1 3'UTR, with UTR-1 exhibiting a strong influence. Further CCK8 assay indicated a protective role of miR-3471 during low oxygen stroke in HIBD. The potential regulatory relationship between lncRNA (tcon_00044595), miR-3471, and the target gene limd1 suggests their involvement in the occurrence and development of HIBD, providing new insights for investigating the underlying mechanisms and exploring targeted therapeutic approaches for HIBD.


Hypoxia-Ischemia, Brain , MicroRNAs , RNA, Long Noncoding , Humans , Infant, Newborn , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , Hypoxia-Ischemia, Brain/genetics , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Apoptosis , Oxygen
18.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article En | MEDLINE | ID: mdl-38069249

Seizures are common in preterm newborns and are associated with poor neurodevelopmental outcomes. Current anticonvulsants have poor efficacy, and many have been associated with upregulation of apoptosis in the developing brain. Apigenin, a natural bioactive flavonoid, is a potent inhibitor of hyaluronidase and reduces seizures in adult animal models. However, its impact on perinatal seizures is unclear. In the present study, we examined the effect of apigenin and S3, a synthetic, selective hyaluronidase inhibitor, on seizures after cerebral ischemia in preterm fetal sheep at 0.7 gestation (98-99 days, term ~147 days). Fetuses received sham ischemia (n = 9) or ischemia induced by bilateral carotid occlusion for 25 min. Immediately after ischemia, fetuses received either a continuous infusion of vehicle (0.036% dimethyl sulfoxide, n = 8) or apigenin (50 µM, n = 6). In a pilot study, we also tested infusion of S3 (2 µM, n = 3). Fetuses were monitored continuously for 72 h after ischemia. Infusion of apigenin or S3 were both associated with reduced numbers of animals with seizures, total seizure time, and mean seizure burden. S3 was also associated with a reduction in the total number of seizures over the 72 h recovery period. In animals that developed seizures, apigenin was associated with earlier cessation of seizures. However, apigenin or S3 treatment did not alter recovery of electroencephalographic power or spectral edge frequency. These data support that targeting brain hyaluronidase activity with apigenin or S3 may be an effective strategy to reduce perinatal seizures following ischemia. Further studies are required to determine their effects on neurohistological outcomes.


Apigenin , Hypoxia-Ischemia, Brain , Pregnancy , Female , Sheep , Animals , Apigenin/pharmacology , Apigenin/therapeutic use , Hyaluronoglucosaminidase , Pilot Projects , Seizures/drug therapy , Fetus/pathology , Ischemia , Electroencephalography , Hypoxia-Ischemia, Brain/pathology
19.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article En | MEDLINE | ID: mdl-37958562

Neonatal hypoxic-ischemic (HI) encephalopathy (HIE) in term newborns is a leading cause of mortality and chronic disability. Hypothermia (HT) is the only clinically available therapeutic intervention; however, its neuroprotective effects are limited. Lactoferrin (LF) is the major whey protein in milk presenting iron-binding, anti-inflammatory and anti-apoptotic properties and has been shown to protect very immature brains against HI damage. We hypothesized that combining early oral administration of LF with whole body hypothermia could enhance neuroprotection in a HIE rat model. Pregnant Wistar rats were fed an LF-supplemented diet (1 mg/kg) or a control diet from (P6). At P7, the male and female pups had the right common carotid artery occluded followed by hypoxia (8% O2 for 60') (HI). Immediately after hypoxia, hypothermia (target temperature of 32.5-33.5 °C) was performed (5 h duration) using Criticool®. The animals were divided according to diet, injury and thermal condition. At P8 (24 h after HI), the brain neurochemical profile was assessed using magnetic resonance spectroscopy (1H-MRS) and a hyperintense T2W signal was used to measure the brain lesions. The mRNA levels of the genes related to glutamatergic excitotoxicity, energy metabolism and inflammation were assessed in the right hippocampus. The cell markers and apoptosis expression were assessed using immunofluorescence in the right hippocampus. HI decreased the energy metabolites and increased lactate. The neuronal-astrocytic coupling impairments observed in the HI groups were reversed mainly by HT. LF had an important effect on astrocyte function, decreasing the levels of the genes related to glutamatergic excitotoxicity and restoring the mRNA levels of the genes related to metabolic support. When combined, LF and HT presented a synergistic effect and prevented lactate accumulation, decreased inflammation and reduced brain damage, pointing out the benefits of combining these therapies. Overall, we showed that through distinct mechanisms lactoferrin can enhance neuroprotection induced by HT following neonatal brain hypoxia-ischemia.


Hypothermia , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Animals , Female , Male , Rats , Animals, Newborn , Brain/pathology , Hypoxia-Ischemia, Brain/pathology , Inflammation/pathology , Lactic Acid/metabolism , Lactoferrin/pharmacology , Lactoferrin/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Wistar , RNA, Messenger
20.
Biomolecules ; 13(11)2023 10 31.
Article En | MEDLINE | ID: mdl-38002281

We recently identified protein kinase N1 (PKN1) as a negative gatekeeper of neuronal AKT protein kinase activity during postnatal cerebellar development. The developing cerebellum is specifically vulnerable to hypoxia-ischemia (HI), as it occurs during hypoxic-ischemic encephalopathy, a condition typically caused by oxygen deprivation during or shortly after birth. In that context, activation of the AKT cell survival pathway has emerged as a promising new target for neuroprotective interventions. Here, we investigated the role of PKN1 in an in vitro model of HI, using postnatal cerebellar granule cells (Cgc) derived from Pkn1 wildtype and Pkn1-/- mice. Pkn1-/- Cgc showed significantly higher AKT phosphorylation, resulting in reduced caspase-3 activation and improved survival after HI. Pkn1-/- Cgc also showed enhanced axonal outgrowth on growth-inhibitory glial scar substrates, further pointing towards a protective phenotype of Pkn1 knockout after HI. The specific PKN1 phosphorylation site S374 was functionally relevant for the enhanced axonal outgrowth and AKT interaction. Additionally, PKN1pS374 shows a steep decrease during cerebellar development. In summary, we demonstrate the pathological relevance of the PKN1-AKT interaction in an in vitro HI model and establish the relevant PKN1 phosphorylation sites, contributing important information towards the development of specific PKN1 inhibitors.


Hypoxia-Ischemia, Brain , Neuroprotective Agents , Animals , Mice , Hypoxia-Ischemia, Brain/pathology , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hypoxia , Cerebellum/metabolism , Animals, Newborn
...